Diffusion term

For turbulent flow \lambda in the energy equation has to be replaced by \lambda + \lambda_t where

\lambda_t = \frac{c_p \mu_t}{Pr_t}, (703)

where Pr_t \approx 0.9 is the turbulent Prandl number. Therefore, one now arrives at:

\int_{A}^{} \lambda^T \frac{\partial T}{\partial n} da \approx \sum_{f}^{} \lambda_f^{T(m-1)} A_f \left [ \frac{T_F ^{(m)} - T_P ^{(m)} }{l_{PF}} + \nabla T_f ^{(m-1)} \cdot (\boldsymbol{n}_f - \boldsymbol{j}_f) \right ], (704)

where \lambda^T := \lambda + \lambda_t and

(\lambda_t)_f ^{(m-1)} = \frac{c_p ^{(m-1)} \rho ^{(m-1)} k ^{(m-1)} }{Pr_t \; \omega ^{(m-1)} }. (705)

\omega is the turbulence frequency. The dynamic turbulent viscosity \mu_t can be written as \mu_t = \rho k / \omega.

The boundary conditions for the diffusion term amount to: