Turbulence equations (compressible flow)

Here, the two-parameter turbulence models BSL (baseline) and SST (shear stress transport) are treated [51]. The k-\epsilon [37] and the k-\omega -model [90] are special cases of the BSL-model. The two parameters are the turbulent kinetic energy k and the turbulence frequency \omega. The equation for k reads [51]:

\frac{\partial \rho k}{\partial t} + \nabla \cdot (\rho k \boldsymbol{v}) = \nabla \cdot \left [ ( \mu + \sigma_k \mu_t) \nabla k \right ] + t_{ij}^t \frac{\partial v_i}{\partial x_j} - \beta^* \rho \omega k. (713)

Since

t_{ij}^t = 2 \mu_t (d_{ij}-\frac{1}{3} d_{kk} \delta_{ij}) - \frac{2}{3} \rho k \delta_{ij} (714)

and

t_{ij}^l = 2 \mu(d_{ij}-\frac{1}{3} d_{kk} \delta_{ij}), (715)

one can write

t_{ij}^t = \frac{\mu_t}{\mu } t_{ij}^l - \frac{2}{3} \rho k \delta_{ij}. (716)

This leads to:

\frac{\partial \rho k}{\partial t} + \nabla \cdot (\rho k \boldsymbol{v}) = \nabla \cdot \left [ ( \mu + \sigma_k \mu_t) \nabla k \right ] + \frac{\mu_t}{\mu } t_{ij}^l d_{ij} - \frac{2}{3} \rho k d_{kk} - \beta^* \rho \omega k. (717)

Notice that \mu_t t_{ij}^l d_{ij}/\mu can be written as:

\displaystyle \frac{\mu_t}{\mu} t_{ij}^l d_{ij} \displaystyle = \mu_t \left ( 2 \left [ \left ( \frac{\partial v_1}{\partial x_... ... ) ^2 + \left ( \frac{\partial v_3}{\partial x_3} \right ) ^2 \right ] \right .    
  \displaystyle + \left [ \left ( \frac{\partial v_1}{\partial x_2} + \frac{\part... ...ial v_2}{\partial x_3} + \frac{\partial v_3}{\partial x_2} \right ) ^2 \right ]    
  \displaystyle - \left . \frac{2}{3} (\nabla \cdot \boldsymbol{v})^2 \right ) (718)

In the above conservation equation \sigma_k is a function of the flow characteristics through the blending factor F1 [51] and the dynamic turbulent viscosity satisfies:

\mu_t=\rho \frac{k}{\omega }. (719)

In fact, the BSL model is a linear combination of the k-\omega model and the k-\epsilon-model with coefficients F_1 and 1-F_1, respectively. Near a wall F_1 tends to 1, thus favoring the k-\omega -model which is particularly good in the near-wall region, far away from a wall F_1 tends to zero, leading to a pure k-\epsilon-model.

The blending factor used in iteration (m) is F_1 ^{(m-1)}, i.e. its calculation is mainly based on the results from the previous iteration and satisfies the following equations:

\displaystyle (F_1)_P ^{(m-1)} \displaystyle = \tanh \left [ \left ( {{\text{arg}}_1}_P ^{(m-1)} \right ) ^4 \right ] (720)
\displaystyle {{\text{arg}}_1}_P ^{(m-1)} \displaystyle = \min \left [ \max \left ( \frac{\sqrt{k_P ^{(m-1)} }}{0.09 \ome... ...a_\omega }_2 k_P ^{(m-1)} }{{(\text{CD}_{k \omega}})_P ^{(m-1)} y_P^2} \right ] (721)
\displaystyle {(\text{CD}_{k \omega}})_P ^{(m-1)} \displaystyle = \max \left ( 2 \rho_P ^{(m)} {\sigma_\omega }_2 \frac{1}{\omega... ...1)} } \nabla k_P ^{(m-1)} \cdot \nabla \omega _P ^{(m-1)} , 10^{-20} \right ) , (722)

where y_P is the distance from the element center P to the next solid surface.

Using the blending factor one obtains the correct parameter values, e.g.:

\sigma_k = F_1 {\sigma_k}_1 + (1-F_1) {\sigma_k}_2. (723)

For completeness the parameters are listed here:

\displaystyle \gamma_1 \displaystyle = \frac{\beta_1}{\beta^*} - \frac{{\sigma_\omega}_1 \kappa^2}{\sq... ...2 = \frac{\beta_2}{\beta^*} - \frac{{\sigma_\omega}_2 \kappa^2}{\sqrt{\beta^*}} (724)
\displaystyle {\sigma_k}_1 \displaystyle = 0.5 \;\;\;\;\; {\sigma_\omega }_1 = 0.5 \;\;\;\;\; \beta_1 = 0.075 (725)
\displaystyle {\sigma_k}_2 \displaystyle = 1.0 \;\;\;\;\; {\sigma_\omega }_2 = 0.856 \;\;\;\;\; \beta_2 = 0.0828 (726)
\displaystyle \beta^* \displaystyle = 0.09 \;\;\;\;\; \kappa=0.41 (727)

In the conservation equation for k one very easily identifies the time-dependent, convective, diffusive and body terms. They are treated in a completely analogous way to the energy equation. The convective boundary conditions amount to:

For the convective interpolation of k the modified smart algorithm has not shown any advantages, therefore, the upwind difference scheme is always used.

The diffusion boundary conditions are:

The source terms are treated in the following way:

The equation for the turbulence frequency \omega runs [51]:

\frac{\partial \rho \omega }{\partial t} + \nabla \cdot (\rho \omega \boldsymbol{v}) = \nabla \cdot \left [ ( \mu + \sigma_\omega \mu_t) \nabla \omega \right ] + \frac{\gamma }{\nu_t} t_{ij}^t d_{ij} - \beta \rho \omega ^2 + 2 \rho (1-F_1) {\sigma_\omega} _2 \frac{1}{\omega } \nabla k \cdot \nabla \omega , (738)

which can be rewritten as:

\displaystyle \frac{\partial \rho \omega }{\partial t} + \nabla \cdot (\rho \omega \boldsymbol{v}) \displaystyle = \nabla \cdot \left [ ( \mu + \sigma_\omega \mu_t) \nabla \omega... ...t ] + \frac{\gamma }{\nu_t} \left [ \frac{\mu_t}{\mu } t_{ij}^l d_{ij} \right ]    
  \displaystyle - \frac{2}{3} \gamma \rho \omega d_{kk} - \beta \rho \omega ^2 + 2 \rho (1-F_1) {\sigma_\omega} _2 \frac{1}{\omega } \nabla k \cdot \nabla \omega . (739)

One easily recognizes the time-dependent, convective, diffusive and source terms. The convective boundary conditions amount to:

For the convective interpolation of \omega the modified smart algorithm has not shown any advantages, therefore, the upwind difference scheme is always used.

The diffusion boundary conditions are:

The source terms are treated as follows: